Inhibition of c-Jun in AgRP neurons increases stress-induced anxiety and colitis susceptibility

0
76


  • Kalin, N. H. Novel insights into pathological anxiety and anxiety-related disorders. Am. J. Psychiatry 177, 187–189 (2020).

    Article 

    Google Scholar 

  • Wang, Y. H. et al. Depression and anxiety in relation to cancer incidence and mortality: a systematic review and meta-analysis of cohort studies. Mol. Psychiatry 25, 1487–1499 (2020).

    Article 

    Google Scholar 

  • Xia, G. et al. Reciprocal control of obesity and anxiety-depressive disorder via a GABA and serotonin neural circuit. Mol. Psychiatry 26, 2837–2853 (2021).

  • Kurina, L. M., Goldacre, M. J., Yeates, D. & Gill, L. E. Depression and anxiety in people with inflammatory bowel disease. J. Epidemiol. Community Health 55, 716–720 (2001).

    Article 
    CAS 

    Google Scholar 

  • de Kloet, E. R., Joels, M. & Holsboer, F. Stress and the brain: from adaptation to disease. Nat. Rev. Neurosci. 6, 463–475 (2005).

    Article 

    Google Scholar 

  • Qiu, B. S., Vallance, B. A., Blennerhassett, P. A. & Collins, S. M. The role of CD4+ lymphocytes in the susceptibility of mice to stress-induced reactivation of experimental colitis. Nat. Med. 5, 1178–1182 (1999).

    Article 
    CAS 

    Google Scholar 

  • Gao, X. et al. Chronic stress promotes colitis by disturbing the gut microbiota and triggering immune system response. Proc. Natl Acad. Sci. USA 115, E2960–E2969 (2018).

    Article 

    Google Scholar 

  • Bonaz, B. L. & Bernstein, C. N. Brain-gut interactions in inflammatory bowel disease. Gastroenterology 144, 36–49 (2013).

    Article 

    Google Scholar 

  • Gracie, D. J., Hamlin, P. J. & Ford, A. C. The influence of the brain-gut axis in inflammatory bowel disease and possible implications for treatment. Lancet Gastroenterol. Hepatol. 4, 632–642 (2019).

    Article 

    Google Scholar 

  • Mawdsley, J. E. & Rampton, D. S. Psychological stress in IBD: new insights into pathogenic and therapeutic implications. Gut 54, 1481–1491 (2005).

    Article 
    CAS 

    Google Scholar 

  • Bains, J. S., Wamsteeker Cusulin, J. I. & Inoue, W. Stress-related synaptic plasticity in the hypothalamus. Nat. Rev. Neurosci. 16, 377–388 (2015).

    Article 
    CAS 

    Google Scholar 

  • Sohn, J. W., Elmquist, J. K. & Williams, K. W. Neuronal circuits that regulate feeding behavior and metabolism. Trends Neurosci. 36, 504–512 (2013).

    Article 
    CAS 

    Google Scholar 

  • Qu, N. et al. A POMC-originated circuit regulates stress-induced hypophagia, depression, and anhedonia. Mol. psychiatry 25, 1006–1021 (2020).

    Article 
    CAS 

    Google Scholar 

  • Fang, X. et al. Chronic unpredictable stress induces depression-related behaviors by suppressing AgRP neuron activity. Mol. psychiatry 26, 2299–2315 (2021).

    Article 
    CAS 

    Google Scholar 

  • Bell, C. G., Walley, A. J. & Froguel, P. The genetics of human obesity. Nat. Rev. Genet 6, 221–234 (2005).

    Article 
    CAS 

    Google Scholar 

  • Broberger, C., Johansen, J., Johansson, C., Schalling, M. & Hokfelt, T. The neuropeptide Y/agouti gene-related protein (AGRP) brain circuitry in normal, anorectic, and monosodium glutamate-treated mice. Proc. Natl Acad. Sci. USA 95, 15043–15048 (1998).

    Article 
    CAS 

    Google Scholar 

  • Krashes, M. J. et al. Rapid, reversible activation of AgRP neurons drives feeding behavior in mice. J. Clin. Investig. 121, 1424–1428 (2011).

    Article 
    CAS 

    Google Scholar 

  • Alhadeff, A. L. et al. A neural circuit for the suppression of pain by a competing need state. Cell 173, 140–152.e115 (2018).

    Article 
    CAS 

    Google Scholar 

  • Jikomes, N., Ramesh, R. N., Mandelblat-Cerf, Y. & Andermann, M. L. Preemptive stimulation of AgRP neurons in fed mice enables conditioned food seeking under threat. Curr. Biol. 26, 2500–2507 (2016).

    Article 
    CAS 

    Google Scholar 

  • Joly-Amado, A. et al. Hypothalamic AgRP-neurons control peripheral substrate utilization and nutrient partitioning. EMBO J. 31, 4276–4288 (2012).

    Article 
    CAS 

    Google Scholar 

  • Kim, J. G. et al. AgRP neurons regulate bone mass. Cell Rep. 13, 8–14 (2015).

    Article 
    CAS 

    Google Scholar 

  • Wisdom, R., Johnson, R. S. & Moore, C. c-Jun regulates cell cycle progression and apoptosis by distinct mechanisms. EMBO J. 18, 188–197 (1999).

    Article 
    CAS 

    Google Scholar 

  • Sakai, M. et al. Structure and expression of the rat c-jun messenger RNA: tissue distribution and increase during chemical hepatocarcinogenesis. Cancer Res. 49, 5633–5637 (1989).

    CAS 

    Google Scholar 

  • Raivich, G. et al. The AP-1 transcription factor c-Jun is required for efficient axonal regeneration. Neuron 43, 57–67 (2004).

    Article 
    CAS 

    Google Scholar 

  • Crocker, S. J. et al. c-Jun mediates axotomy-induced dopamine neuron death in vivo. Proc. Natl Acad. Sci. USA 98, 13385–13390 (2001).

    Article 
    CAS 

    Google Scholar 

  • Chottekalapanda, R. U. et al. AP-1 controls the p11-dependent antidepressant response. Mol. psychiatry 25, 1364–1381 (2020).

    Article 
    CAS 

    Google Scholar 

  • Windak, R. et al. The AP-1 transcription factor c-Jun prevents stress-imposed maladaptive remodeling of the heart. PloS One 8, e73294 (2013).

    Article 
    CAS 

    Google Scholar 

  • Filipovic, D., Zlatkovic, J., Pavicevic, I., Mandic, L. & Demajo, M. Chronic isolation stress compromises JNK/c-Jun signaling in rat brain. J. Neural Transm. (Vienna) 119, 1275–1284 (2012).

    Article 
    CAS 

    Google Scholar 

  • McNeill, M. S. & Robinson, G. E. Voxel-based analysis of the immediate early gene, c-jun, in the honey bee brain after a sucrose stimulus. Insect Mol. Biol. 24, 377–390 (2015).

    Article 
    CAS 

    Google Scholar 

  • Hoffman, G. E., Smith, M. S. & Verbalis, J. G. c-Fos and related immediate early gene products as markers of activity in neuroendocrine systems. Front Neuroendocrinol. 14, 173–213 (1993).

    Article 
    CAS 

    Google Scholar 

  • Herdegen, T. et al. Basal expression of the inducible transcription factors c-Jun, JunB, JunD, c-Fos, FosB, and Krox-24 in the adult rat brain. J. Comp. Neurol. 354, 39–56 (1995).

    Article 
    CAS 

    Google Scholar 

  • Liu, W. Z. et al. Identification of a prefrontal cortex-to-amygdala pathway for chronic stress-induced anxiety. Nat. Commun. 11, 2221 (2020).

    Article 
    CAS 

    Google Scholar 

  • Tian, Y. et al. MicroRNA-31 reduces inflammatory signaling and promotes regeneration in colon epithelium, and delivery of mimics in microspheres reduces colitis in mice. Gastroenterology 156, 2281–2296.e2286 (2019).

    Article 
    CAS 

    Google Scholar 

  • Krashes, M. J., Shah, B. P., Koda, S. & Lowell, B. B. Rapid versus delayed stimulation of feeding by the endogenously released AgRP neuron mediators GABA, NPY, and AgRP. Cell Metab. 18, 588–595 (2013).

    Article 
    CAS 

    Google Scholar 

  • Burnett, C. J. et al. Hunger-driven motivational state competition. Neuron 92, 187–201 (2016).

    Article 
    CAS 

    Google Scholar 

  • Adams, J. C. & Lawler, J. The thrombospondins. Cold Spring Harb. Perspect. Biol. 3, a009712 (2011).

    Article 

    Google Scholar 

  • Grimbert, P. et al. Thrombospondin/CD47 interaction: a pathway to generate regulatory T cells from human CD4+ CD25- T cells in response to inflammation. J. Immunol. 177, 3534–3541 (2006).

    Article 
    CAS 

    Google Scholar 

  • Bai, J. et al. Thrombospondin 1 improves hepatic steatosis in diet-induced insulin-resistant mice and is associated with hepatic fat content in humans. EBioMedicine 57, 102849 (2020).

    Article 

    Google Scholar 

  • Lee, H. S., Lobbestael, E., Vermeire, S., Sabino, J. & Cleynen, I. Inflammatory bowel disease and Parkinson’s disease: common pathophysiological links. Gut 70, 408–417 (2021).

    CAS 

    Google Scholar 

  • Gracie, D. J., Guthrie, E. A., Hamlin, P. J. & Ford, A. C. Bi-directionality of brain-gut interactions in patients with inflammatory bowel disease. Gastroenterology 154, 1635–1646.e1633 (2018).

    Article 

    Google Scholar 

  • Blackwell, J. et al. Depression in individuals who subsequently develop inflammatory bowel disease: a population-based nested case-control study. Gut 70, 1642–1648 (2021).

    Article 
    CAS 

    Google Scholar 

  • Koloski, N. A. et al. The brain–gut pathway in functional gastrointestinal disorders is bidirectional: a 12-year prospective population-based study. Gut 61, 1284–1290 (2012).

    Article 
    CAS 

    Google Scholar 

  • Adhikari, A., Topiwala, M. A. & Gordon, J. A. Synchronized activity between the ventral hippocampus and the medial prefrontal cortex during anxiety. Neuron 65, 257–269 (2010).

    Article 
    CAS 

    Google Scholar 

  • Molodecky, N. A. et al. Increasing incidence and prevalence of the inflammatory bowel diseases with time, based on systematic review. Gastroenterology 142, 46–54.e42 (2012).

    Article 

    Google Scholar 

  • Baenziger, N. L., Brodie, G. N. & Majerus, P. W. A thrombin-sensitive protein of human platelet membranes. Proc. Natl Acad. Sci. USA 68, 240–243 (1971).

    Article 
    CAS 

    Google Scholar 

  • Punekar, S. et al. Thrombospondin 1 and its mimetic peptide ABT-510 decrease angiogenesis and inflammation in a murine model of inflammatory bowel disease. Pathobiology 75, 9–21 (2008).

    Article 
    CAS 

    Google Scholar 

  • Gutierrez, L. S., Ling, J., Nye, D., Papathomas, K. & Dickinson, C. Thrombospondin peptide ABT-898 inhibits inflammation and angiogenesis in a colitis model. World J. Gastroenterol. 21, 6157–6166 (2015).

    Article 
    CAS 

    Google Scholar 

  • Lopez-Dee, Z. P. et al. Thrombospondin-1 type 1 repeats in a model of inflammatory bowel disease: transcript profile and therapeutic effects. PloS One 7, e34590 (2012).

    Article 
    CAS 

    Google Scholar 

  • Christopherson, K. S. et al. Thrombospondins are astrocyte-secreted proteins that promote CNS synaptogenesis. Cell 120, 421–433 (2005).

    Article 
    CAS 

    Google Scholar 

  • Fang, L. L. et al. Thrombospondin 1 modulates monocyte properties to suppress intestinal mucosal inflammation. J. Innate Immun. 7, 601–611 (2015).

    Article 
    CAS 

    Google Scholar 

  • Varela, L. et al. Hunger-promoting AgRP neurons trigger an astrocyte-mediated feed-forward autoactivation loop in mice. J. Clin. Invest. 131, e144239 (2021).

  • Ghia, J. E., Blennerhassett, P., Kumar-Ondiveeran, H., Verdu, E. F. & Collins, S. M. The vagus nerve: a tonic inhibitory influence associated with inflammatory bowel disease in a murine model. Gastroenterology 131, 1122–1130 (2006).

    Article 

    Google Scholar 

  • Ghia, J. E., Blennerhassett, P. & Collins, S. M. Impaired parasympathetic function increases susceptibility to inflammatory bowel disease in a mouse model of depression. J. Clin. Investig. 118, 2209–2218 (2008).

    CAS 

    Google Scholar 

  • Strembitska, A. et al. Lipid biosynthesis enzyme Agpat5 in AgRP-neurons is required for insulin-induced hypoglycemia sensing and glucagon secretion. Nat. Commun. 13, 5761 (2022).

    Article 
    CAS 

    Google Scholar 

  • Shah, S. C. et al. Sex-based differences in incidence of inflammatory bowel diseases-pooled analysis of population-based studies from western countries. Gastroenterology 155, 1079–1089.e1073 (2018).

    Article 

    Google Scholar 

  • Li, K., Nakajima, M., Ibanez-Tallon, I. & Heintz, N. A cortical circuit for sexually dimorphic oxytocin-dependent anxiety behaviors. Cell 167, 60–72.e11 (2016).

    Article 
    CAS 

    Google Scholar 

  • Li, S. H. & Graham, B. M. Why are women so vulnerable to anxiety, trauma-related and stress-related disorders? The potential role of sex hormones. Lancet Psychiatry 4, 73–82 (2017).

    Article 

    Google Scholar 

  • Xu, L., Huang, G., Cong, Y., Yu, Y. & Li, Y. Sex-related differences in inflammatory bowel diseases: the potential role of sex hormones. Inflamm. Bowel Dis. 28, 1766–1775 (2022).

    Article 

    Google Scholar 

  • Madisen, L. et al. A robust and high-throughput Cre reporting and characterization system for the whole mouse brain. Nat. Neurosci. 13, 133–140 (2010).

    Article 
    CAS 

    Google Scholar 

  • Fan, K. Q. et al. Stress-induced metabolic disorder in peripheral CD4(+) T cells leads to anxiety-like behavior. Cell 179, 864–879.e819 (2019).

    Article 
    CAS 

    Google Scholar 

  • Rachmilewitz, D. et al. Immunostimulatory DNA ameliorates experimental and spontaneous murine colitis. Gastroenterology 122, 1428–1441 (2002).

    Article 
    CAS 

    Google Scholar 

  • Yuan, F. et al. Activation of GCN2/ATF4 signals in amygdalar PKC-delta neurons promotes WAT browning under leucine deprivation. Nat. Commun. 11, 2847 (2020).

    Article 
    CAS 

    Google Scholar 

  • Herman, A. M. et al. A cholinergic basal forebrain feeding circuit modulates appetite suppression. Nature 538, 253–256 (2016).

    Article 
    CAS 

    Google Scholar 

  • Deng, Y. et al. SGK1/FOXO3 signaling in hypothalamic POMC neurons mediates glucocorticoid-increased adiposity. Diabetes 67, 569–580 (2018).

    Article 
    CAS 

    Google Scholar 

  • Hu, X. et al. ATF4 deficiency promotes intestinal inflammation in mice by reducing uptake of glutamine and expression of antimicrobial peptides. Gastroenterology 156, 1098–1111 (2019).

    Article 

    Google Scholar 

  • Zhu, P., Bowden, P., Zhang, D. & Marshall, J. G. Mass spectrometry of peptides and proteins from human blood. Mass Spectrom. Rev. 30, 685–732 (2011).

    Article 
    CAS 

    Google Scholar 

  • Lee, J. E., Kwon, H. J., Choi, J., Seo, J. S. & Han, P. L. Aging increases vulnerability to stress-induced depression via upregulation of NADPH oxidase in mice. Commun. Biol. 3, 292 (2020).

    Article 
    CAS 

    Google Scholar 



  • Source link