Home Body Treatments Biophysical evaluation of treating adipose tissue-derived stem cells using non-thermal atmospheric pressure plasma

Biophysical evaluation of treating adipose tissue-derived stem cells using non-thermal atmospheric pressure plasma

0

[ad_1]

  • Fridman, G. et al. Applied plasma medicine. Plasma Process. Polym. 5(6), 503–533 (2008).

    CAS 
    Article 

    Google Scholar
     

  • Fridman, A. & Friedman, G. Plasma Medicine (John Wiley & Sons Inc, 2013).


    Google Scholar
     

  • Semmler, M. L. et al. Molecular mechanisms of the efficacy of cold atmospheric pressure plasma (cap) in cancer treatment. Cancers (Basel) 12(2), 269 (2020).

    CAS 
    Article 

    Google Scholar
     

  • Alemi, P. S. et al. Synergistic effect of pressure cold atmospheric plasma and carboxymethyl chitosan to mesenchymal stem cell differentiation on PCL/CMC nanofibers for cartilage tissue engineering. Polym. Adv. Technol. 30(6), 1356–1364 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Labay, C. et al. Enhanced generation of reactive species by cold plasma in gelatin solutions for selective cancer cell death. ACS Appl. Mater. Interfaces 12(42), 47256–47269 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Mirpour, S. et al. Utilizing the micron sized non-thermal atmospheric pressure plasma inside the animal body for the tumor treatment application. Sci. Rep. 6(1), 1–10 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Volotskova, O., Dubrovsky, L., Keidar, M. & Bukrinsky, M. Cold atmospheric plasma inhibits HIV-1 replication in macrophages by targeting both the virus and the cells. PLoS ONE 11(10), e0165322 (2016).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Kaushik, N. K. et al. Plasma and nanomaterials: Fabrication and biomedical applications. Nanomaterials 9(1), 98 (2019).

    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Khlyustova, A., Labay, C., Machala, Z., Ginebra, M.-P. & Canal, C. Important parameters in plasma jets for the production of RONS in liquids for plasma medicine: A brief review. Front. Chem. Sci. Eng. 13(2), 238–252 (2019).

    CAS 
    Article 

    Google Scholar
     

  • Lu, X. et al. Reactive species in non-equilibrium atmospheric-pressure plasmas: Generation, transport, and biological effects. Phys. Rep. 630, 1–84 (2016).

    ADS 
    MathSciNet 
    CAS 
    Article 

    Google Scholar
     

  • E. Grundmann, “Pathology, E. Rubin, JL Farber (Eds.), JB Lippincott Comp., Philadelphia (1988), 1576 pages. ISBN: 0-397-50698-8. Hard cover DM 140,-.” Urban & Fischer, 1990.

  • Lin, A. et al. Non-equilibrium dielectric barrier discharge treatment of mesenchymal stem cells: Charges and reactive oxygen species play the major role in cell death. Plasma Process. Polym. 12(10), 1117–1127. https://doi.org/10.1002/ppap.201400232 (2015).

    CAS 
    Article 

    Google Scholar
     

  • Graves, D. B. The emerging role of reactive oxygen and nitrogen species in redox biology and some implications for plasma applications to medicine and biology. J. Phys. D. Appl. Phys. 45(26), 263001 (2012).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • Xu, D. et al. In situ OH generation from O2− and H2O2 plays a critical role in plasma-induced cell death. PLoS ONE 10(6), e0128205 (2015).

    PubMed 
    PubMed Central 
    Article 
    CAS 

    Google Scholar
     

  • Tobita, M., Orbay, H. & Mizuno, H. Adipose-derived stem cells: Current findings and future perspectives. Discov. Med. 11(57), 160–170 (2011).

    PubMed 

    Google Scholar
     

  • Hass, R., Kasper, C., Böhm, S. & Jacobs, R. Different populations and sources of human mesenchymal stem cells (MSC): A comparison of adult and neonatal tissue-derived MSC. Cell Commun. Signal. 9(1), 1–14 (2011).

    Article 
    CAS 

    Google Scholar
     

  • Yarak, S. & Okamoto, O. K. Human adipose-derived stem cells: Current challenges and clinical perspectives. An. Bras. Dermatol. 85(5), 647–656 (2010).

    PubMed 
    Article 

    Google Scholar
     

  • Bunnell, B. A., Flaat, M., Gagliardi, C., Patel, B. & Ripoll, C. Adipose-derived stem cells: Isolation, expansion and differentiation. Methods 45(2), 115–120 (2008).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Park, J. et al. Non-thermal atmospheric pressure plasma is an excellent tool to activate proliferation in various mesoderm-derived human adult stem cells. Free Radic. Biol. Med. 134, 374–384 (2019).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Miana, V. V. & González, E. A. P. Adipose tissue stem cells in regenerative medicine. Ecancermedicalscience 12, 2 (2018).

    Article 

    Google Scholar
     

  • Saeedi, P., Halabian, R. & Fooladi, A. A. I. A revealing review of mesenchymal stem cells therapy, clinical perspectives and Modification strategies. Stem cell Investig. 6, 2 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Rodriguez, A.-M., Elabd, C., Amri, E.-Z., Ailhaud, G. & Dani, C. The human adipose tissue is a source of multipotent stem cells. Biochimie 87(1), 125–128 (2005).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Mizuno, H., Tobita, M. & Uysal, A. C. Concise review: adipose-derived stem cells as a novel tool for future regenerative medicine. Stem Cells 30(5), 804–810 (2012).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Rodriguez, A.-M. et al. Adipocyte differentiation of multipotent cells established from human adipose tissue. Biochem. Biophys. Res. Commun. 315(2), 255–263 (2004).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Bacou, F. et al. Transplantation of adipose tissue-derived stromal cells increases mass and functional capacity of damaged skeletal muscle. Cell Transplant. 13(2), 103–111 (2004).

    PubMed 
    Article 

    Google Scholar
     

  • Miranville, A. et al. Improvement of postnatal neovascularization by human adipose tissue-derived stem cells. Circulation 110(3), 349–355 (2004).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Planat-Benard, V. et al. Plasticity of human adipose lineage cells toward endothelial cells: Physiological and therapeutic perspectives. Circulation 109(5), 656–663 (2004).

    PubMed 
    Article 

    Google Scholar
     

  • Fathollah, S. et al. Investigation on the effects of the atmospheric pressure plasma on wound healing in diabetic rats. Sci. Rep. 6, 19144 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Mirpour, S. et al. Cold atmospheric plasma as an effective method to treat diabetic foot ulcers: A randomized clinical trial. Sci. Rep. 10(1), 1–9 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Pietkiewicz, S., Schmidt, J. H. & Lavrik, I. N. Quantification of apoptosis and necroptosis at the single cell level by a combination of imaging flow cytometry with classical annexin v/propidium iodide staining. J. Immunol. Methods 423, 99–103 (2015).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Crowley, L. C., Marfell, B. J., Scott, A. P. & Waterhouse, N. J. Quantitation of apoptosis and necrosis by annexin V binding, propidium iodide uptake, and flow cytometry. Cold Spring Harb. Protoc. 2016(11), 87288 (2016).


    Google Scholar
     

  • Babadi, M., Mohajerani, E., Ataie-Fashtami, L., Zand, N. & Shirkavand, A. Quantitative analysis of skin erythema due to laser hair removal: A diffusion optical spectroscopy analysis. J. lasers Med. Sci. 10(2), 97 (2019).

    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Shirkavand, A., Mohajerani, E., Farivar, S., Ataie-Fashtami, L. & Ghazimoradi, M. H. Monitoring the response of skin melanoma cell line (A375) to treatment with vemurafenib: A pilot in vitro optical spectroscopic study. Photobiomod. Photomed. Laser Surg. 39(3), 164–177 (2021).

    CAS 

    Google Scholar
     

  • Shirkavand, A., Farivar, S., Mohajerani, E., Ataie-Fashtami, L. & Ghazimoradi, M. H. Non-invasive reflectance spectroscopy for normal and cancerous skin cells refractive index determination: An in vitro study. Lasers Surg. Med. 51(8), 742–750 (2019).

    PubMed 
    Article 

    Google Scholar
     

  • Baskić, D., Popović, S., Ristić, P. & Arsenijević, N. N. Analysis of cycloheximide-induced apoptosis in human leukocytes: Fluorescence microscopy using annexin V/propidium iodide versus acridin orange/ethidium bromide. Cell Biol. Int. 30(11), 924–932 (2006).

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Shi, X.-M. et al. Viability reduction of melanoma cells by plasma jet via inducing G1/S and G2/M cell cycle arrest and cell apoptosis. IEEE Trans. Plasma Sci. 42(6), 1640–1647 (2014).

    Article 
    CAS 

    Google Scholar
     

  • Batsali, A. K. et al. Differential expression of cell cycle and WNT pathway-related genes accounts for differences in the growth and differentiation potential of Wharton’s jelly and bone marrow-derived mesenchymal stem cells. Stem Cell Res. Ther. 8(1), 1–17 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Kajstura, M., Halicka, H. D., Pryjma, J. & Darzynkiewicz, Z. Discontinuous fragmentation of nuclear DNA during apoptosis revealed by discrete ‘sub-G1’ peaks on DNA content histograms. Cytom. Part A J. Int. Soc. Anal. Cytol. 71(3), 125–131 (2007).

    Article 
    CAS 

    Google Scholar
     

  • Amer, J., Goldfarb, A. & Fibach, E. Flow cytometric measurement of reactive oxygen species production by normal and thalassaemic red blood cells. Eur. J. Haematol. 70(2), 84–90 (2003).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Christov, A., Hamdheydari, L. & Grammas, P. Detection of reactive oxygen species by flow cytometry. In Methods in Biological Oxidative Stress 175–184 (Springer, 2003).

    Chapter 

    Google Scholar
     

  • Ghaleno, L. R. et al. Evaluation of conventional semen parameters, intracellular reactive oxygen species, DNA fragmentation and dysfunction of mitochondrial membrane potential after semen preparation techniques: A flow cytometric study. Arch. Gynecol. Obstet. 289(1), 173–180 (2014).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Šimončicová, J., Kryštofová, S., Medvecká, V., Ďurišová, K. & Kaliňáková, B. Technical applications of plasma treatments: Current state and perspectives. Appl. Microbiol. Biotechnol. 103(13), 5117–5129 (2019).

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Peterková, L. et al. Argon plasma-treated fluorinated ethylene propylene: Growth of primary dermal fibroblasts and mesenchymal stem cells. Tissue Cell 58, 121–129 (2019).

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Zhou, H. et al. Effects of Exendin-4 on bone marrow mesenchymal stem cell proliferation, migration and apoptosis in vitro. Sci. Rep. 5(1), 1–14 (2015).


    Google Scholar
     

  • Yusupov, M. et al. Reactive molecular dynamics simulations of oxygen species in a liquid water layer of interest for plasma medicine. J. Phys. D. Appl. Phys. 47(2), 25205 (2013).

    Article 
    CAS 

    Google Scholar
     

  • Dominici, M. et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8(4), 315–317 (2006).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Tan, F., Fang, Y., Zhu, L. & Al-Rubeai, M. Controlling stem cell fate using cold atmospheric plasma. Stem Cell Res. Ther. 11(1), 1–10 (2020).

    Article 

    Google Scholar
     

  • Miletić, M. et al. Effects of non-thermal atmospheric plasma on human periodontal ligament mesenchymal stem cells. J. Phys. D. Appl. Phys. https://doi.org/10.1088/0022-3727/46/34/345401 (2013).

    Article 

    Google Scholar
     

  • Girard, P.-M. et al. Synergistic effect of H2O2 and NO2 in cell death induced by cold atmospheric He plasma. Sci. Rep. 6(1), 1–17 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Szili, E. J., Hong, S.-H., Oh, J.-S., Gaur, N. & Short, R. D. Tracking the penetration of plasma reactive species in tissue models. Trends Biotechnol. 36(6), 594–602 (2018).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Halliwell, B. & Gutteridge, J. M. C. Free Radicals in Biology and Medicine (Oxford University Press, 2015).

    Book 

    Google Scholar
     

  • Privat-Maldonado, A. et al. Ros from physical plasmas: Redox chemistry for biomedical therapy. Oxid. Med. Cell. Longev. 20, 19 (2019).


    Google Scholar
     

  • Ahn, H. J. et al. Atmospheric-pressure plasma jet induces apoptosis involving mitochondria via generation of free radicals. PLoS ONE 6(11), e28154 (2011).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Kalghatgi, S. et al. Effects of non-thermal plasma on mammalian cells. PLoS ONE 6(1), e16270 (2011).

    ADS 
    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Iseki, S. et al. Selective killing of ovarian cancer cells through induction of apoptosis by nonequilibrium atmospheric pressure plasma. Appl. Phys. Lett. 100(11), 113702 (2012).

    ADS 
    Article 
    CAS 

    Google Scholar
     

  • Sheikh, M. S., Antinore, M. J., Huang, Y. & Fornace, A. J. Ultraviolet-irradiation-induced apoptosis is mediated via ligand independent activation of tumor necrosis factor receptor 1. Oncogene 17(20), 2555–2563 (1998).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Laurent, A. et al. Controlling tumor growth by modulating endogenous production of reactive oxygen species. Cancer Res. 65(3), 948–956 (2005).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Maraldi, T., Angeloni, C., Giannoni, E., & Sell, C. Reactive oxygen species in stem cells. Hindawi, 2015.

  • Chaudhari, P., Ye, Z. & Jang, Y.-Y. Roles of reactive oxygen species in the fate of stem cells. Antioxid. Redox Signal. 20(12), 1881–1890 (2014).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Kalghatgi, S., Friedman, G., Fridman, A. & Clyne, A. M. Endothelial cell proliferation is enhanced by low dose non-thermal plasma through fibroblast growth factor-2 release. Ann. Biomed. Eng. 38(3), 748–757. https://doi.org/10.1007/s10439-009-9868-x (2010).

    Article 
    PubMed 

    Google Scholar
     

  • Liou, G.-Y. & Storz, P. Reactive oxygen species in cancer. Free Radic. Res. 44(5), 479–496 (2010).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Wang, K. et al. Redox homeostasis: The linchpin in stem cell self-renewal and differentiation. Cell Death Dis. 4(3), e537–e537 (2013).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • MacMicking, J., Xie, Q. & Nathan, C. Nitric oxide and macrophage function. Annu. Rev. Immunol. 15(1), 323–350 (1997).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Cheng, A., Wang, S., Cai, J., Rao, M. S. & Mattson, M. P. Nitric oxide acts in a positive feedback loop with BDNF to regulate neural progenitor cell proliferation and differentiation in the mammalian brain. Dev. Biol. 258(2), 319–333 (2003).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Brüne, B. Nitric oxide: NO apoptosis or turning it ON?. Cell Death Differ. 10(8), 864–869 (2003).

    PubMed 
    Article 
    CAS 

    Google Scholar
     

  • Villalobo, A. Nitric oxide and cell proliferation. FEBS J. 273(11), 2329–2344 (2006).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Bogdan, C. Nitric oxide and the immune response. Nat. Immunol. 2(10), 907–916 (2001).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • Tejedo, J. R. et al. Low concentrations of nitric oxide delay the differentiation of embryonic stem cells and promote their survival. Cell Death Dis. 1(10), e80–e80 (2010).

    CAS 
    PubMed 
    PubMed Central 
    Article 

    Google Scholar
     

  • Carreras, M. C. & Poderoso, J. J. Mitochondrial nitric oxide in the signaling of cell integrated responses. Am. J. Physiol. Physiol. 292(5), C1569–C1580 (2007).

    CAS 
    Article 

    Google Scholar
     

  • Park, J. et al. Non-thermal atmospheric pressure plasma efficiently promotes the proliferation of adipose tissue-derived stem cells by activating NO-response pathways. Sci. Rep. 6(1), 1–12 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Park, J. et al. Non-thermal atmospheric pressure plasma induces epigenetic modifications that activate the expression of various cytokines and growth factors in human mesoderm-derived stem cells. Free Radic. Biol. Med. 148, 108–122 (2020).

    CAS 
    PubMed 
    Article 

    Google Scholar
     

  • [ad_2]

    Source link