Home Injectables Apitherapy combination improvement of blood pressure, cardiovascular protection, and antioxidant and anti-inflammatory responses in dexamethasone model hypertensive rats

Apitherapy combination improvement of blood pressure, cardiovascular protection, and antioxidant and anti-inflammatory responses in dexamethasone model hypertensive rats

0

[ad_1]

  • Yuyun, M. F., Sliwa, K., Kengne, A. P., Mocumbi, A. O. & Bukhman, G. Cardiovascular diseases in sub-saharan Africa compared to high-income countries: An epidemiological perspective. Glob. Heart 15, 15. https://doi.org/10.5334/gh.403 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Purushothaman, S., Renuka Nair, R., Harikrishnan, V. S. & Fernandez, A. C. Temporal relation of cardiac hypertrophy, oxidative stress, and fatty acid metabolism in spontaneously hypertensive rat. Mol. Cell. Biochem. 351, 59–64. https://doi.org/10.1007/s11010-011-0711-y (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Mills, K. T., Stefanescu, A. & He, J. The global epidemiology of hypertension. Nat. Rev. Nephrol. 16, 223–237. https://doi.org/10.1038/s41581-019-0244-2 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Botzer, A., Finkelstein, Y., Grossman, E., Moult, J. & Unger, R. Iatrogenic hypertension: A bioinformatic analysis. Pharmacogenomics J. 19, 337–346. https://doi.org/10.1038/s41397-018-0062-0 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Dubey, H., Singh, A., Patole, A. M. & Tenpe, C. R. Antihypertensive effect of allicin in dexamethasone-induced hypertensive rats. Integr. Med. Res. 6, 60–65. https://doi.org/10.1016/j.imr.2016.12.002 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Ong, S. L., Zhang, Y. & Whitworth, J. A. Mechanisms of dexamethasone-induced hypertension. Curr. Hypertens. Rev. 5, 61–74. https://doi.org/10.2174/157340209787314315 (2009).

    Article 
    CAS 

    Google Scholar 

  • Cornara, L., Biagi, M., Xiao, J. & Burlando, B. Therapeutic properties of bioactive compounds from different honeybee products. Front. Pharmacol. 8, 412. https://doi.org/10.3389/fphar.2017.00412 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Cherbuliez, T. Biotherapy – History, Principles and Practice: A Practical Guide to the Diagnosis and Treatment of Disease Using Living Organisms (eds. Grassberger, M. et al.). 113–146 (Springer Netherlands, 2013).

  • Ahmad, S., Campos, M. G., Fratini, F., Altaye, S. Z. & Li, J. New insights into the biological and pharmaceutical properties of royal jelly. Int. J. Mol. Sci. 21, 382. https://doi.org/10.3390/ijms21020382 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Münstedt, K. Bee Products and Their Applications in the Food and Pharmaceutical Industries (ed. Boyacioglu, D.). 1–23 (Academic Press, 2022).

  • Nikhat, S. & Fazil, M. History, phytochemistry, experimental pharmacology and clinical uses of honey: A comprehensive review with special reference to Unani medicine. J. Ethnopharmacol. 282, 114614. https://doi.org/10.1016/j.jep.2021.114614 (2022).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kuropatnicki, A. K., Kłósek, M. & Kucharzewski, M. Honey as medicine: Historical perspectives. J. Apic. Res. 57, 113–118. https://doi.org/10.1080/00218839.2017.1411182 (2018).

    Article 

    Google Scholar 

  • Rodrigo, R., González, J. & Paoletto, F. The role of oxidative stress in the pathophysiology of hypertension. Hypertens. Res. 34, 431–440. https://doi.org/10.1038/hr.2010.264 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Erejuwa, O. O. et al. Honey supplementation in spontaneously hypertensive rats elicits antihypertensive effect via amelioration of renal oxidative stress. Oxid. Med. Cell. Longev. 2012, 374037. https://doi.org/10.1155/2012/374037 (2012).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Houston, M. C. The role of cellular micronutrient analysis, nutraceuticals, vitamins, antioxidants and minerals in the prevention and treatment of hypertension and cardiovascular disease. Ther. Adv. Cardiovasc. Dis. 4, 165–183. https://doi.org/10.1177/1753944710368205 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ozdemir, B., Gulhan, M. F., Sahna, E. & Selamoglu, Z. The investigation of antioxidant and anti-inflammatory potentials of apitherapeutic agents on heart tissues in nitric oxide synthase inhibited rats via Nω-nitro-l-arginine methyl ester. Clin. Exp. Hypertens. 43, 69–76. https://doi.org/10.1080/10641963.2020.1806294 (2021).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Mishima, S. et al. Effects of propolis on cell growth and gene expression in HL-60 cells. J. Ethnopharmacol. 99, 5–11. https://doi.org/10.1016/j.jep.2005.02.005 (2005).

    Article 
    PubMed 

    Google Scholar 

  • Silva, H. et al. The cardiovascular therapeutic potential of propolis—A comprehensive review. Biology 10, 27. https://doi.org/10.3390/biology10010027 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Durazzo, A. et al. Bee products: A representation of biodiversity, sustainability, and health. Life 11, 970 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • El-Guendouz, S. et al. Chemical characterization and biological properties of royal jelly samples from the Mediterranean area. Nat. Prod. Commun. 15, 1934578X20908080. https://doi.org/10.1177/1934578X20908080 (2020).

    Article 
    CAS 

    Google Scholar 

  • Kolayli, S. & Keskin, M. Studies in Natural Products Chemistry (ed. Atta ur, R.). Vol. 66. 175–196 (Elsevier, 2020).

  • Weis, W. A. et al. An overview about apitherapy and its clinical applications. Phytomed. Plus 2, 100239. https://doi.org/10.1016/j.phyplu.2022.100239 (2022).

    Article 

    Google Scholar 

  • Carpena, M., Nuñez-Estevez, B., Soria-Lopez, A. & Simal-Gandara, J. Bee venom: An updating review of its bioactive molecules and its health applications. Nutrients 12, 3360. https://doi.org/10.3390/nu12113360 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhang, S. et al. Bee venom therapy: Potential mechanisms and therapeutic applications. Toxicon 148, 64–73. https://doi.org/10.1016/j.toxicon.2018.04.012 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Gebreyohannes, E. A., Bhagavathula, A. S., Abebe, T. B., Tefera, Y. G. & Abegaz, T. M. Adverse effects and non-adherence to antihypertensive medications in University of Gondar comprehensive specialized hospital. Clin. Hypertens. 25, 1. https://doi.org/10.1186/s40885-018-0104-6 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Xie, Y. et al. Association between antihypertensive medication use and breast cancer: A systematic review and meta-analysis. Front. Pharmacol. 12, 609901. https://doi.org/10.3389/fphar.2021.609901 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Sun, Y., Han, M., Shen, Z., Huang, H. & Miao, X. Anti-hypertensive and cardioprotective effects of a novel apitherapy formulation via upregulation of peroxisome proliferator-activated receptor-α and -γ in spontaneous hypertensive rats. Saudi J. Biol. Sci. 25, 213–219. https://doi.org/10.1016/j.sjbs.2017.10.010 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Zambrano, T. Y. M., Joza, J. M. A., Cobeña, G. V. S., Anchundia, S. E. P. & Zambrano, Y. D. M. Honey, pollen and propolis in therapeutic treatments for COVID-19. Int. J. Health Sci. 6, 196–213. https://doi.org/10.53730/ijhs.v6n1.3766 (2022).

    Article 

    Google Scholar 

  • TanuğurSamancı, A. E. & Kekeçoğlu, M. Development of a cream formulation containing bee venom and other bee products. J. Cosmet. Dermatol. https://doi.org/10.1111/jocd.14891 (2022).

    Article 

    Google Scholar 

  • Kas, et al. Correction of atherogenic dyslipidemia with honey, pollen and bee bread in patients with different body mass. Ter. Arkh. 83, 58–62 (2011).

    Google Scholar 

  • Andriţoiu, C. V. et al. Effect of apitherapy products against carbon tetrachloride-induced toxicity in Wistar rats. Roman. J. Morphol. Embryol. (Rev. Roumaine Morphol. Embryol.) 55, 835–847 (2014).

    Google Scholar 

  • Handjiev, S., Handjieva-Darlenska, T. & Kuzeva, A. The Role of Functional Food Security in Global Health (eds. Singh, R.B., Watson, R.R. & Takahashi, T.). 449–456 (Academic Press, 2019).

  • Elshater, A.-E.A., MohiEldin, M. M., Salman, M. M. A. & Kasem, N. R. A. The curative effect of Bee Venom and Propolis on oxidative stress induced by γ-irradiation on blood and tissues of rats. Egypt. Acad. J. Biol. Sci. C Physiol. Mol. Biol. 6, 53–69. https://doi.org/10.21608/eajbsc.2014.16047 (2014).

    Article 

    Google Scholar 

  • Drigla, F. et al. Synergistic effects induced by combined treatments of aqueous extract of propolis and venom. Clujul Med. 89, 104–109. https://doi.org/10.15386/cjmed-527 (2016).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nassar, A. M. K. et al. Ameliorative effects of honey, propolis, pollen, and royal jelly mixture against chronic toxicity of sumithion insecticide in white Albino rats. Molecules https://doi.org/10.3390/molecules25112633 (2020).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Safaeian, L. & Zabolian, H. Antioxidant effects of bovine lactoferrin on dexamethasone-induced hypertension in rat. ISRN Pharmacol. 2014, 943523. https://doi.org/10.1155/2014/943523 (2014). http://europepmc.org/abstract/MED/24587916; https://www.ncbi.nlm.nih.gov/pmc/articles/pmid/24587916/pdf/?tool=EBI; https://www.ncbi.nlm.nih.gov/pmc/articles/pmid/24587916/?tool=EBI; https://europepmc.org/articles/PMC3920649; https://europepmc.org/articles/PMC3920649?pdf=render.

  • Macedo, F. N. et al. NOX-dependent reactive oxygen species production underlies arrhythmias susceptibility in dexamethasone-treated rats. Free Radical Biol. Med. 152, 1–7. https://doi.org/10.1016/j.freeradbiomed.2020.03.005 (2020).

    Article 
    CAS 

    Google Scholar 

  • Holzem, K. M. & Efimov, I. R. Arrhythmogenic remodelling of activation and repolarization in the failing human heart. EP Europace 14, v50–v57. https://doi.org/10.1093/europace/eus275 (2012).

    Article 

    Google Scholar 

  • Weber, K. T. & Brilla, C. G. Pathological hypertrophy and cardiac interstitium. Fibrosis and renin-angiotensin-aldosterone system. Circulation 83, 1849–1865. https://doi.org/10.1161/01.CIR.83.6.1849 (1991).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Landstrom, A. P., Dobrev, D. & Wehrens, X. H. T. Calcium signaling and cardiac arrhythmias. Circ. Res. 120, 1969–1993. https://doi.org/10.1161/CIRCRESAHA.117.310083 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Malekinejad, H. et al. Cardioprotective effect of royal jelly on paclitaxel-induced cardio-toxicity in rats. Iran J. Basic Med. Sci. 19, 221–227 (2016).

    PubMed 
    PubMed Central 

    Google Scholar 

  • Gu, H., Han, S. M. & Park, K.-K. Therapeutic effects of apamin as a bee venom component for non-neoplastic disease. Toxins (Basel) 12, 195. https://doi.org/10.3390/toxins12030195 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hsieh, Y.-C. et al. Apamin-sensitive potassium current modulates action potential duration restitution and arrhythmogenesis of failing rabbit ventricles. Circ. Arrhythm. Electrophysiol. 6, 410–418. https://doi.org/10.1161/CIRCEP.111.000152 (2013).

    Article 
    MathSciNet 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Yin, D. et al. Role of apamin-sensitive calcium-activated small-conductance potassium currents on the mechanisms of ventricular fibrillation in pacing-induced failing rabbit hearts. Circ. Arrhythm. Electrophysiol. 10, e004434. https://doi.org/10.1161/CIRCEP.116.004434 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Whitehurst, R. M. Jr., Zhang, M., Bhattacharjee, A. & Li, M. Dexamethasone-induced hypertrophy in rat neonatal cardiac myocytes involves an elevated L-type Ca2+current. J. Mol. Cell. Cardiol. 31, 1551–1558. https://doi.org/10.1006/jmcc.1999.0990 (1999).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Roy, S. G. et al. Excess of glucocorticoid induces cardiac dysfunction via activating angiotensin II pathway. Cell. Physiol. Biochem. 24, 1–10. https://doi.org/10.1159/000227803 (2009).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sadoshima, J., Qiu, Z., Morgan, J. P. & Izumo, S. Angiotensin II and other hypertrophic stimuli mediated by G protein-coupled receptors activate tyrosine kinase, mitogen-activated protein kinase, and 90-kD S6 kinase in cardiac myocytes. Circ. Res. 76, 1–15. https://doi.org/10.1161/01.RES.76.1.1 (1995).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Schirone, L. et al. A review of the molecular mechanisms underlying the development and progression of cardiac remodeling. Oxid. Med. Cell. Longev. 2017, 3920195. https://doi.org/10.1155/2017/3920195 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • He, N. et al. Evodiamine inhibits angiotensin II-induced rat cardiomyocyte hypertrophy. Chin. J. Integr. Med. 24, 359–365. https://doi.org/10.1007/s11655-017-2818-9 (2018).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Heineke, J. & Molkentin, J. D. Regulation of cardiac hypertrophy by intracellular signalling pathways. Nat. Rev. Mol. Cell Biol. 7, 589–600. https://doi.org/10.1038/nrm1983 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Takenaka, H. et al. Angiotensin II, oxidative stress, and extracellular matrix degradation during transition to LV failure in rats with hypertension. J. Mol. Cell. Cardiol. 41, 989–997. https://doi.org/10.1016/j.yjmcc.2006.07.019 (2006).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kyaw, M., Yoshizumi, M., Tsuchiya, K., Kirima, K. & Tamaki, T. Antioxidants inhibit JNK and p38 MAPK activation but not ERK 1/2 activation by angiotensin II in rat aortic smooth muscle cells. Hypertens. Res. 24, 251–261. https://doi.org/10.1291/hypres.24.251 (2001).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Alanazi, A. Z. & Clark, M. A. Angiotensin III induces p38 Mitogen-activated protein kinase leading to proliferation of vascular smooth muscle cells. Pharmacol. Rep. 72, 246–253. https://doi.org/10.1007/s43440-019-00035-8 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Eroglu, E., Kocyigit, I. & Lindholm, B. The endothelin system as target for therapeutic interventions in cardiovascular and renal disease. Clin. Chim. Acta 506, 92–106. https://doi.org/10.1016/j.cca.2020.03.008 (2020).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Kohno, M. et al. Angiotensin II stimulates endothelin-1 secretion in cultured rat mesangial cells. Kidney Int. 42, 860–866. https://doi.org/10.1038/ki.1992.361 (1992).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Barton, M., Shaw, S., d’uscio, L. V., Moreau, P. & Lüscher, T. F. Angiotensin II increases vascular and renal endothelin-1 and functional endothelin converting enzyme activity in vivo: Role of ETA receptors for endothelin regulation. Biochem. Biophys. Res. Commun. 238, 861–865. https://doi.org/10.1006/bbrc.1997.7394 (1997).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Villar, A. V. et al. BAMBI (BMP and activin membrane-bound inhibitor) protects the murine heart from pressure-overload biomechanical stress by restraining TGF-β signaling. Biochim. Biophys. Acta Mol. Basis Dis. 323–335, 2013. https://doi.org/10.1016/j.bbadis.2012.11.007 (1832).

    Article 
    CAS 

    Google Scholar 

  • van Uum, S. H. M., Lenders, J. W. M. & Hermus, A. R. M. M. Cortisol, 11β-hydroxysteroid dehydrogenases, and hypertension. Semin. Vasc. Med. 4, 121–128 (2004).

    Article 
    PubMed 

    Google Scholar 

  • Sato, A. et al. Glucocorticoid increases angiotensin II type 1 receptor and its gene expression. Hypertension 23, 25–30. https://doi.org/10.1161/01.HYP.23.1.25 (1994).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Scheuer, D. A. & Bechtold, A. G. Glucocorticoids potentiate central actions of angiotensin to increase arterial pressure. Am. J. Physiol. 280, R1719–R1726 (2001).

    CAS 

    Google Scholar 

  • Goumans, M. J. & Ten Dijke, P. TGF-β signaling in control of cardiovascular function. Cold Spring Harb. Perspect. Biol. 10, a0222. https://doi.org/10.1101/cshperspect.a022210 (2018).

    Article 
    CAS 

    Google Scholar 

  • Chung, S. et al. TGF-β promotes fibrosis after severe acute kidney injury by enhancing renal macrophage infiltration. JCI Insight 3, e123563. https://doi.org/10.1172/jci.insight.123563 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Annaldas, S., Saifi, M. A., Khurana, A. & Godugu, C. Nimbolide ameliorates unilateral ureteral obstruction-induced renal fibrosis by inhibition of TGF-β and EMT/Slug signalling. Mol. Immunol. 112, 247–255. https://doi.org/10.1016/j.molimm.2019.06.003 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Eggena, P. & Barrett, J. D. Renin substrate release in response to perturbations of renin-angiotensin system. Am. J. Physiol.-Endocrinol. Metab. 254, E389–E393. https://doi.org/10.1152/ajpendo.1988.254.4.E389 (1988).

    Article 
    CAS 

    Google Scholar 

  • Rouhert, P. et al. Endothelin receptor regulation by endothelin synthesis in vascular smooth muscle cells: Effects of dexamethasone and phosphoramidon. J. Vasc. Res. 30, 139–144. https://doi.org/10.1159/000158988 (1993).

    Article 

    Google Scholar 

  • Kanse, S. M., Takahashi, K., Warren, J. B., Ghatei, M. & Bloom, S. R. Glucocorticoids induce endothelin release from vascular smooth muscle cells but not endothelial cells. Eur. J. Pharmacol. 199, 99–101. https://doi.org/10.1016/0014-2999(91)90641-3 (1991).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Takahashi, K., Suda, K., Lam, H. C., Ghatei, M. A. & Bloom, S. R. Endothelin-like immunoreactivity in rat models of diabetes mellitus. J. Endocrinol. 130, 123–127. https://doi.org/10.1677/joe.0.1300123 (1991).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Dammeier, J., Beer, H. D., Brauchle, M. & Werner, S. Dexamethasone is a novel potent inducer of connective tissue growth factor expression. Implications for glucocorticoid therapy. J. Biol. Chem. 273, 18185–18190. https://doi.org/10.1074/jbc.273.29.18185 (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Silveira, M. A. D. et al. Effects of Brazilian green propolis on proteinuria and renal function in patients with chronic kidney disease: A randomized, double-blind, placebo-controlled trial. BMC Nephrol. 20, 140. https://doi.org/10.1186/s12882-019-1337-7 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hefnawy, T., El-Shourbagy, G. & Ramadan, M. Impact of adding chickpea (Cicer arietinum L.) flour to wheat flour on the rheological properties of toast bread. Int. Food Res. J. 19, 521–525 (2012).

    CAS 

    Google Scholar 

  • Alrowais, N. A. & Alyousefi, N. A. The prevalence extent of complementary and alternative medicine (CAM) use among Saudis. Saudi Pharm. J. 25, 306–318. https://doi.org/10.1016/j.jsps.2016.09.009 (2017).

    Article 
    PubMed 

    Google Scholar 

  • Tokunaga, K.-H. et al. Antihypertensive effect of peptides from royal jelly in spontaneously hypertensive rats. Biol. Pharm. Bull. 27, 189–192. https://doi.org/10.1248/bpb.27.189 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hasona, N. A., Alrashidi, A. A., Aldugieman, T. Z., Alshdokhi, A. M. & Ahmed, M. Q. Vitis vinifera extract ameliorate hepatic and renal dysfunction induced by dexamethasone in Albino rats. Toxics 5, 11. https://doi.org/10.3390/toxics5020011 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Schäfer, S. C. et al. Dexamethasone suppresses eNOS and CAT-1 and induces oxidative stress in mouse resistance arterioles. Am. J. Physiol. Heart Circ. Physiol. 288, H436–H444. https://doi.org/10.1152/ajpheart.00587.2004 (2005).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Xu, N. et al. Reactive oxygen species in renal vascular function. Acta Physiol. 229, e13477. https://doi.org/10.1111/apha.13477 (2020).

    Article 
    CAS 

    Google Scholar 

  • Owu, D. U., Okon, I. A., Ufot, U. F. & Beshel, J. A. Cardiac and renal protective effect of vitamin E in dexamethasone-induced oxidative stressed Wistar rats. Niger. J. Physiol. Sci. 35, 52–60 (2020).

    PubMed 

    Google Scholar 

  • Fukai, T. & Ushio-Fukai, M. Superoxide dismutases: Role in redox signaling, vascular function, and diseases. Antioxid. Redox Signal. 15, 1583–1606. https://doi.org/10.1089/ars.2011.3999 (2011).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Lassègue, B. & Griendling, K. K. Reactive oxygen species in hypertension: An update. Am. J. Hypertens. 17, 852–860. https://doi.org/10.1016/j.amjhyper.2004.02.004 (2004).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Sousa, T. et al. Role of superoxide and hydrogen peroxide in hypertension induced by an antagonist of adenosine receptors. Eur. J. Pharmacol. 588, 267–276. https://doi.org/10.1016/j.ejphar.2008.04.044 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Todorova, I., Simeonova, G., Kyuchukova, D., Dinev, D. & Gadjeva, V. Reference values of oxidative stress parameters (MDA, SOD, CAT) in dogs and cats. Comp. Clin. Pathol. 13, 190–194. https://doi.org/10.1007/s00580-005-0547-5 (2005).

    Article 
    CAS 

    Google Scholar 

  • Mateos, R., Lecumberri, E., Ramos, S., Goya, L. & Bravo, L. Determination of malondialdehyde (MDA) by high-performance liquid chromatography in serum and liver as a biomarker for oxidative stress: Application to a rat model for hypercholesterolemia and evaluation of the effect of diets rich in phenolic antioxidants from fruits. J. Chromatogr. B 827, 76–82. https://doi.org/10.1016/j.jchromb.2005.06.035 (2005).

    Article 
    CAS 

    Google Scholar 

  • Parkar, N. A., Bhatt, L. K. & Addepalli, V. Efficacy of nobiletin, a citrus flavonoid, in the treatment of the cardiovascular dysfunction of diabetes in rats. Food Funct. 7, 3121–3129. https://doi.org/10.1039/c6fo00294c (2016).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Neto, J. C. et al. Cardioprotective effect of hydroalcoholic extract of Brazilian red propolis against isoproterenol-induced myocardial infarction in rats. Phytomed. Plus 2, 100190. https://doi.org/10.1016/j.phyplu.2021.100190 (2022).

    Article 

    Google Scholar 

  • Shinohara, R., Ohta, Y., Hayashi, T. & Ikeno, T. Evaluation of antilipid peroxidative action of propolis ethanol extract. Phytother. Res. 16, 340–347. https://doi.org/10.1002/ptr.894 (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Vaziri, N. D., Lin, C.-Y., Farmand, F. & Sindhu, R. K. Superoxide dismutase, catalase, glutathione peroxidase and NADPH oxidase in lead-induced hypertension. Kidney Int. 63, 186–194. https://doi.org/10.1046/j.1523-1755.2003.00711.x (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Gómez-Garre, D. et al. Activation of NF-κB in tubular epithelial cells of rats with intense proteinuria. Hypertension 37, 1171–1178. https://doi.org/10.1161/01.HYP.37.4.1171 (2001).

    Article 
    PubMed 

    Google Scholar 

  • Teles, F. et al. Brazilian red propolis attenuates hypertension and renal damage in 5/6 renal ablation model. PLoS ONE 10, e0116535. https://doi.org/10.1371/journal.pone.0116535 (2015).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Salmas, R. E. et al. Effects of propolis, caffeic acid phenethyl ester, and pollen on renal injury in hypertensive rat: An experimental and theoretical approach. Cell Biochem. Funct. 35, 304–314. https://doi.org/10.1002/cbf.3277 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Maqsoudlou, A. et al. Peptide identification in alcalase hydrolysated pollen and comparison of its bioactivity with royal jelly. Food Res. Int. 116, 905–915. https://doi.org/10.1016/j.foodres.2018.09.027 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Köhler, R., Kaistha, B. P. & Wulff, H. Vascular KCa-channels as therapeutic targets in hypertension and restenosis disease. Expert Opin. Ther. Targets 14, 143–155. https://doi.org/10.1517/14728220903540257 (2010).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Pourmoradian, S., Mahdavi, R., Mobasseri, M., Faramarzi, E. & Mobasseri, M. Effects of royal jelly supplementation on glycemic control and oxidative stress factors in type 2 diabetic female: A randomized clinical trial. Chin. J. Integr. Med. 20, 347–352. https://doi.org/10.1007/s11655-014-1804-8 (2014).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Khalil, A., Elesawy, B. H., Ali, T. M. & Ahmed, O. M. Bee venom: From venom to drug. Molecules 26, 4941 (2021).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kang, H.-S. et al. The cardiovascular depression caused by bee venom in Sprague-Dawley rats associated with a decrease of developed pressure in the left ventricular and the ratio of ionized calcium/ionized magnesium. Am. J. Chin. Med. 36, 505–516. https://doi.org/10.1142/S0192415X08005941 (2008).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Lee, W.-R. et al. Bee venom reduces atherosclerotic lesion formation via anti-inflammatory mechanism. Am. J. Chin. Med. 38, 1077–1092. https://doi.org/10.1142/S0192415X10008482 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Meligi, N. M., Ismail, S. A. & Tawfik, N. S. Protective effects of honey and bee venom against lipopolysaccharide and carbon tetrachloride-induced hepatoxicity and lipid peroxidation in rats. Toxicol. Res. 9, 693–705. https://doi.org/10.1093/toxres/tfaa077 (2020).

    Article 

    Google Scholar 

  • Kocot, J., Kiełczykowska, M., Luchowska-Kocot, D., Kurzepa, J. & Musik, I. Antioxidant potential of propolis, bee pollen, and royal jelly: Possible medical application. Oxid. Med. Cell. Longev. 2018, 7074209. https://doi.org/10.1155/2018/7074209 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Zhazykbayeva, S., Pabel, S., Mügge, A., Sossalla, S. & Hamdani, N. The molecular mechanisms associated with the physiological responses to inflammation and oxidative stress in cardiovascular diseases. Biophys. Rev. 12, 947–968. https://doi.org/10.1007/s12551-020-00742-0 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • St Paul, A., Corbett, C. B., Okune, R. & Autieri, M. V. Angiotensin II, hypercholesterolemia, and vascular smooth muscle cells: A perfect trio for vascular pathology. Int. J. Mol. Sci. 21, 4525. https://doi.org/10.3390/ijms21124525 (2020).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fujihara, C. K. et al. Chronic inhibition of nuclear factor-κB attenuates renal injury in the 5/6 renal ablation model. Am. J. Physiol. Renal Physiol. 292, F92–F99. https://doi.org/10.1152/ajprenal.00184.2006 (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ruiz-Ortega, M. et al. Angiotensin II activates nuclear transcription factor κB through AT1 and AT2 in vascular smooth muscle cells. Circ. Res. 86, 1266–1272. https://doi.org/10.1161/01.RES.86.12.1266 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wolf, G. et al. Angiotensin II activates nuclear transcription factor-κB through AT1 and AT2 receptors 11 see editorial by Luft, p. 2272. Kidney Int. 61, 1986–1995. https://doi.org/10.1046/j.1523-1755.2002.00365.x (2002).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Fiordelisi, A., Iaccarino, G., Morisco, C., Coscioni, E. & Sorriento, D. NFkappaB is a key player in the crosstalk between inflammation and cardiovascular diseases. Int. J. Mol. Sci. 20, 1599. https://doi.org/10.3390/ijms20071599 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Queisser, N. & Schupp, N. Aldosterone, oxidative stress, and NF-κB activation in hypertension-related cardiovascular and renal diseases. Free Radical Biol. Med. 53, 314–327. https://doi.org/10.1016/j.freeradbiomed.2012.05.011 (2012).

    Article 
    CAS 

    Google Scholar 

  • Choy, K. W. et al. Flavonoids as natural anti-inflammatory agents targeting Nuclear Factor-Kappa B (NFκB) signaling in cardiovascular diseases: A mini review. Front. Pharmacol. 10, 3389. https://doi.org/10.3389/fphar.2019.01295 (2019).

    Article 
    CAS 

    Google Scholar 

  • You, M.-M. et al. Royal jelly attenuates LPS-induced inflammation in BV-2 microglial cells through modulating NF-κB and p38/JNK signaling pathways. Mediators Inflamm. 2018, 7834381. https://doi.org/10.1155/2018/7834381 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Bernal-Mizrachi, C. et al. Dexamethasone induction of hypertension and diabetes is PPAR-α dependent in LDL receptor–null mice. Nat. Med. 9, 1069–1075. https://doi.org/10.1038/nm898 (2003).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Savitha, M. N. et al. Active-site directed peptide l-Phe-d-His-l-Leu inhibits angiotensin converting enzyme activity and dexamethasone-induced hypertension in rats. Peptides 112, 34–42. https://doi.org/10.1016/j.peptides.2018.11.002 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Wang, Q., Sui, X., Sui, D.-J. & Yang, P. Flavonoid extract from propolis inhibits cardiac fibrosis triggered by myocardial infarction through upregulation of SIRT1. Evid. Based Complement. Alternat. Med. 2018, 4957573. https://doi.org/10.1155/2018/4957573 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Payne, R. A., Wilkinson, I. B. & Webb, D. J. Arterial stiffness and hypertension. Hypertension 55, 9–14. https://doi.org/10.1161/HYPERTENSIONAHA.107.090464 (2010).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Miyauchi, S. et al. Visit-to-visit blood pressure variability and arterial stiffness: Which came first: The chicken or the egg?. Curr. Pharm. Des. 25, 685–692. https://doi.org/10.2174/1381612825666190329122024 (2019).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Ge, L. et al. The role of losartan in preventing vascular remodeling in spontaneously hypertensive rats by inhibition of the H2O2/VPO1/HOCl/MMPs pathway. Biochem. Biophys. Res. Commun. 493, 855–861. https://doi.org/10.1016/j.bbrc.2017.06.026 (2017).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Nath, K. A. The tubulointerstitium in progressive renal disease. Kidney Int. 54, 992–994. https://doi.org/10.1046/j.1523-1755.1998.00079.x (1998).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Liu, X., Xu, X., Shang, R. & Chen, Y. Asymmetric dimethylarginine (ADMA) as an important risk factor for the increased cardiovascular diseases and heart failure in chronic kidney disease. Nitric Oxide 78, 113–120. https://doi.org/10.1016/j.niox.2018.06.004 (2018).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Eddy, A. A. Overview of the cellular and molecular basis of kidney fibrosis. Kidney Int. Suppl. 4, 2–8. https://doi.org/10.1038/kisup.2014.2 (2014).

    Article 
    CAS 

    Google Scholar 

  • Zhong, J. et al. Prevention of angiotensin II-mediated renal oxidative stress, inflammation, and fibrosis by angiotensin-converting enzyme 2. Hypertension 57, 314–322. https://doi.org/10.1161/HYPERTENSIONAHA.110.164244 (2011).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Guo, H. et al. Kidney failure, arterial hypertension and left ventricular hypertrophy in rats with loss of function mutation of SOD3. Free Radical Biol. Med. 152, 787–796. https://doi.org/10.1016/j.freeradbiomed.2020.01.023 (2020).

    Article 
    CAS 

    Google Scholar 

  • Gao, W., Wang, Y., Basavanagoud, B. & Jamil, M. K. Characteristics studies of molecular structures in drugs. Saudi Pharm. J. 25, 580–586. https://doi.org/10.1016/j.jsps.2017.04.027 (2017).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wu, J.-J. et al. Interactions between phytochemicals from traditional Chinese medicines and human cytochrome P450 enzymes. Curr. Drug Metab. 13, 599–614. https://doi.org/10.2174/1389200211209050599 (2012).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Hellner, M., Winter, D., von Georgi, R. & Münstedt, K. Apitherapy: Usage and experience in German beekeepers. Evid. Based Complement. Altern. Med. 5, 827582. https://doi.org/10.1093/ecam/nem052 (2008).

    Article 

    Google Scholar 

  • Cao, X. & Yang, H. Study on extraction of flavonoids from propolis and the activity of scavenging free radicals. Sci. Technol. Cereals Oils Foods (in Chinese) 2015, 45–49. http://en.cnki.com.cn/Article_en/CJFDTotal-MFZA201112008.htm (2015).

  • Woisky, R. G. & Salatino, A. Analysis of propolis: some parameters and procedures for chemical quality control. J. Apic. Res. 37, 99–105. https://doi.org/10.1080/00218839.1998.11100961 (1998).

    Article 
    CAS 

    Google Scholar 

  • Metrology, N. I. O. Guidelines for Chemical Testing Methods Validation (2011).

  • Reis, J. H. D. O. et al. Evaluation of the antioxidant profile and cytotoxic activity of red propolis extracts from different regions of northeastern Brazil obtained by conventional and ultrasound-assisted extraction. PLoS ONE 14, e0219063. https://doi.org/10.1371/journal.pone.0219063 (2019).

    Article 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ong, S. L. H. et al. Role of xanthine oxidase in dexamethasone-induced hypertension in rats. Clin. Exp. Pharmacol. Physiol. 34, 517–519. https://doi.org/10.1111/j.1440-1681.2007.04605.x (2007).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Cerbai, E. et al. Long-term treatment of spontaneously hypertensive rats with losartan and electrophysiological remodeling of cardiac myocytes. Cardiovasc. Res. 45, 388–396. https://doi.org/10.1016/S0008-6363(99)00344-2 (2000).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Field, K. J., White, W. J. & Lang, C. M. Anaesthetic effects of chloral hydrate, pentobarbitone and urethane in adult male rats. Lab. Anim. 27, 258–269. https://doi.org/10.1258/002367793780745471 (1993).

    Article 
    CAS 
    PubMed 

    Google Scholar 

  • Parasuraman, S. & Raveendran, R. Measurement of invasive blood pressure in rats. J. Pharmacol. Pharmacother. 3, 172 (2012).

    PubMed 
    PubMed Central 

    Google Scholar 

  • [ad_2]

    Source link