Home Facial Treatments Alteration of barrier properties, stratum corneum ceramides and microbiome composition in response to lotion application on cosmetic dry skin

Alteration of barrier properties, stratum corneum ceramides and microbiome composition in response to lotion application on cosmetic dry skin

0
Alteration of barrier properties, stratum corneum ceramides and microbiome composition in response to lotion application on cosmetic dry skin

[ad_1]

  • Turnbaugh, P. J. et al. The human microbiome project. Nature 449, 804–810. https://doi.org/10.1038/nature06244 (2007).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Samaras, S. & Hoptroff, M. Book Chapter—The Microbiome of Healthy Skin in Skin Microbiome Handbook: From Basic Research to Product Development 1–32 (Wiley, 2020).

    Book 

    Google Scholar 

  • Rothman, S. & Lorincz, A. L. Defense mechanisms of the skin. Annu. Rev. Med. 14, 215–242. https://doi.org/10.1146/annurev.me.14.020163.001243 (1963).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Grice, E. A. & Segre, J. A. The skin microbiome. Nat. Rev. Microbiol. 9, 244–253. https://doi.org/10.1038/nrmicro2537 (2011).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • James, A. G. Book Chapter—The Axillary Microbiome and its Relationship with Underarm Odor in Skin Microbiome Handbook: From Basic Research to Product Development 9–129 (Wiley, 2020).

    Google Scholar 

  • Oh, J. et al. Temporal stability of the human skin microbiome. Cell 165, 854–866. https://doi.org/10.1016/j.cell.2016.04.008 (2016).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kong, H. H. et al. Temporal shifts in the skin microbiome associated with disease flares and treatment in children with atopic dermatitis. Genome Res. 22, 850. https://doi.org/10.1101/gr.131029.111 (2012).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fitz-Gibbon, S. et al. Propionibacterium acnes strain populations in the human skin microbiome associated with acne. J. Investig. Dermatol. 133, 2152–2160 (2013).

    CAS 
    Article 

    Google Scholar 

  • Grimshaw, S. G. et al. The diversity and abundance of fungi and bacteria on the healthy and dandruff affected human scalp. PLoS ONE 14, e0225796. https://doi.org/10.1371/journal.pone.0225796 (2019).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Segre, J. A. et al. Skin microbiome in health and disease. Genome Biol. 11, I18. https://doi.org/10.1186/gb-2010-11-s1-i18 (2010).

    Article 
    PubMed Central 

    Google Scholar 

  • Augustin, M. et al. Prevalence, predictors and comorbidity of dry skin in the general population. J. Eur. Acad. Dermatol. Venereol. 33, 147–150. https://doi.org/10.1111/jdv.15157 (2019).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Mekic, S. et al. Prevalence and determinants for xerosis cutis in the middle-aged and elderly population: A cross-sectional study. J. Am. Acad. Dermatol. 81, 963–969. https://doi.org/10.1016/j.jaad.2018.12.038 (2019).

    Article 
    PubMed 

    Google Scholar 

  • De Benedetto, A., Kubo, A. & Beck, L. A. Skin barrier disruption: A requirement for allergen sensitization? J. Invest. Dermatol. 132, 949–963. https://doi.org/10.1038/jid.2011.435 (2012).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hu, L. et al. Epidermal dysfunction leads to an age-associated increase in levels of serum inflammatory cytokines. J. Investig. Dermatol. 137, 1277–1285. https://doi.org/10.1016/j.jid.2017.01.007 (2017).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Knox, S. & O’Boyle, N. M. Skin lipids in health and disease: A review. Chem. Phys. Lipid 236, 105055. https://doi.org/10.1016/j.chemphyslip.2021.105055 (2021).

    CAS 
    Article 

    Google Scholar 

  • Weerheim, A. & Ponec, M. Determination of stratum corneum lipid profile by tape stripping in combination with high-performance thin-layer chromatography. Arch. Dermatol. Res. 293, 191–199. https://doi.org/10.1007/s004030100212 (2001).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • van Smeden, J. & Bouwstra, J. A. Stratum corneum lipids: Their role for the skin barrier function in healthy subjects and atopic dermatitis patients. Curr. Probl. Dermatol. 49, 8–26. https://doi.org/10.1159/000441540 (2016).

    Article 
    PubMed 

    Google Scholar 

  • Ishikawa, J. et al. Dry skin in the winter is related to the ceramide profile in the stratum corneum and can be improved by treatment with a Eucalyptus extract. J. Cosmet. Dermatol. 12, 3–11. https://doi.org/10.1111/jocd.12019 (2013).

    Article 
    PubMed 

    Google Scholar 

  • Ishikawa, J. et al. Changes in the ceramide profile of atopic dermatitis patients. J. Investig. Dermatol. 130, 2511–2514. https://doi.org/10.1038/jid.2010.161 (2010).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • van Smeden, J. et al. The importance of free fatty acid chain length for the skin barrier function in atopic eczema patients. Exp. Dermatol. 23, 45–52. https://doi.org/10.1111/exd.12293 (2014).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Janssens, M. et al. Increase in short-chain ceramides correlates with an altered lipid organization and decreased barrier function in atopic eczema patients. J. Lipid Res. 53, 2755–2766. https://doi.org/10.1194/jlr.P030338 (2012).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Masukawa, Y. et al. Characterization of overall ceramide species in human stratum corneum. J. Lipid Res. 49, 1466–1476. https://doi.org/10.1194/jlr.M800014-JLR200 (2008).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Mandal, S. et al. Analysis of composition of microbiomes: A novel method for studying microbial composition. Microb. Ecol. Health Dis. 26, 27663. https://doi.org/10.3402/mehd.v26.27663 (2015).

    Article 
    PubMed 

    Google Scholar 

  • Lozupone, C. & Knight, R. UniFrac: A new phylogenetic method for comparing microbial communities. Appl. Environ. Microbiol. 71, 8228. https://doi.org/10.1128/AEM.71.12.8228-8235.2005 (2005).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Douglas, G. M. et al. PICRUSt2 for prediction of metagenome functions. Nat. Biotechnol. 38, 685–688. https://doi.org/10.1038/s41587-020-0548-6 (2020).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Segata, N. et al. Metagenomic biomarker discovery and explanation. Genome Biol. 12, R60. https://doi.org/10.1186/gb-2011-12-6-r60 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, L. et al. Facial skin microbiota mediated host response to pollution stress revealed by microbiome networks of individuals. mSystems. https://doi.org/10.1128/mSystems.00319-21 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fluhr, J. W., Darlenski, R. & Surber, C. Glycerol and the skin: Holistic approach to its origin and functions. Br. J. Dermatol. 159, 23–34. https://doi.org/10.1111/j.1365-2133.2008.08643.x (2008).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Berkers, T., van Dijk, L., Absalah, S., van Smeden, J. & Bouwstra, J. A. Topically applied fatty acids are elongated before incorporation in the stratum corneum lipid matrix in compromised skin. Exp. Dermatol. 26, 36–43. https://doi.org/10.1111/exd.13116 (2017).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Stacy, A. & Belkaid, Y. Microbial guardians of skin health. Science 363, 227–228. https://doi.org/10.1126/science.aat4326 (2019).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Lai, Y. et al. Activation of TLR2 by a small molecule produced by Staphylococcus epidermidis increases antimicrobial defense against bacterial skin infections. J. Investig. Dermatol. 130, 2211. https://doi.org/10.1038/jid.2010.123 (2010).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Lai, Y. et al. Commensal bacteria regulate Toll-like receptor 3-dependent inflammation after skin injury. Nat. Med. 15, 1377–1382. https://doi.org/10.1038/nm.2062 (2009).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, D. et al. Lipopeptide 78 from Staphylococcus epidermidis activates β-catenin to inhibit skin inflammation. J. Immunol. https://doi.org/10.4049/jimmunol.1800813 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nakatsuji, T. et al. A commensal strain of Staphylococcus epidermidis protects against skin neoplasia. Sci. Adv. 4, 4502. https://doi.org/10.1126/sciadv.aao4502 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Nodake, Y. et al. Pilot study on novel skin care method by augmentation with Staphylococcus epidermidis, an autologous skin microbe—A blinded randomized clinical trial. J. Dermatol. Sci. 79, 119–126. https://doi.org/10.1016/j.jdermsci.2015.05.001 (2015).

    Article 
    PubMed 

    Google Scholar 

  • Zheng, Y. et al. Commensal Staphylococcus epidermidis contributes to skin barrier homeostasis by generating protective ceramides. Cell Host Microbe. https://doi.org/10.1016/j.chom.2022.01.004 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Jiang, D. et al. Microbiome multi-omics network analysis: Statistical considerations, limitations, and opportunities. Front. Genet. https://doi.org/10.3389/fgene.2019.00995 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Layeghifard, M., Hwang, D. M. & Guttman, D. S. Disentangling interactions in the microbiome: A network perspective. Trends Microbiol. 25, 217–228. https://doi.org/10.1016/j.tim.2016.11.008 (2017).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Martin, R., Henley, J. B., Sarrazin, P. & Seite, S. Skin microbiome in patients with psoriasis before and after balneotherapy at the thermal care center of La Roche-Posay. J. Drugs Dermatol. 14, 1400–1405 (2015).

    PubMed 

    Google Scholar 

  • Baldwin, H. E., Bhatia, N. D., Friedman, A., Eng, R. M. & Seite, S. The role of cutaneous microbiota harmony in maintaining a functional skin barrier. J. Drugs Dermatol. 16, 12–18 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • Seité, S., Zelenkova, H. & Martin, R. Clinical efficacy of emollients in atopic dermatitis patients—Relationship with the skin microbiota modification. Clin. Cosmet. Investig. Dermatol. 10, 25–33. https://doi.org/10.2147/CCID.S121910 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Palaniraj, A. & Jayaraman, V. Production, recovery and applications of xanthan gum by Xanthomonas campestris. J. Food Eng. 106, 1–12. https://doi.org/10.1016/j.jfoodeng.2011.03.035 (2011).

    CAS 
    Article 

    Google Scholar 

  • Glatz, M. et al. Emollient use alters skin barrier and microbes in infants at risk for developing atopic dermatitis. PLoS ONE 13, e0192443. https://doi.org/10.1371/journal.pone.0192443 (2018).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Capone, K., Kirchner, F., Klein, S. L. & Tierney, N. K. Effects of colloidal oatmeal topical atopic dermatitis cream on skin microbiome and skin barrier properties. J. Drugs Dermatol. 19, 524–531 (2020).

    Article 

    Google Scholar 

  • Zheng, Y. et al. Shifts in the skin microbiome associated with diaper dermatitis and emollient treatment amongst infants and toddlers in China. Exp. Dermatol. 28, 1289–1297. https://doi.org/10.1111/exd.14028 (2019).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Wilhelm, K. P., Elsner, P., Berardesca, E. & Maibach, H. I. Bioengineering of the Skin: Skin Imaging and Analysis 2nd edn. (Taylor & Francis, 1996).

    Google Scholar 

  • Feng, L. et al. Characteristic differences in barrier and hygroscopic properties between normal and cosmetic dry skin. II. Depth profile of natural moisturizing factor and cohesivity. Int. J. Cosmet. Sci. 36, 231–238. https://doi.org/10.1111/ics.12118 (2014).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Williamson, P. & Kligman, A. M. A new method for the quantitative investigation of cutaneous bacteria. J. Investig. Dermatol. 45, 498–503 (1965).

    CAS 
    Article 

    Google Scholar 

  • Kurtz, Z. D. et al. Sparse and compositionally robust inference of microbial ecological networks. PLoS Comput. Biol. 11, e1004226. https://doi.org/10.1371/journal.pcbi.1004226 (2015).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Meinshausen, N. & Buhlmann, P. High-dimensional graphs and variable selection with the Lasso. Ann. Stat. 34, 1436–1462. https://doi.org/10.1214/009053606000000281 (2006).

    MathSciNet 
    Article 
    MATH 

    Google Scholar 

  • Liu, H., Roeder, K. & Wasserman, L. Proc. 23rd International Conference on Neural Information Processing Systems—Volume 2, 1432–1440 (Curran Associates Inc., 2010).

  • Efron, B. & Tibshirani, R. J. An Introduction to the Bootstrap (Chapman & Hall, 1993).

    Book 

    Google Scholar 

  • Wang, L. et al. Facial skin microbiota-mediated host response to pollution stress revealed by microbiome networks of individual. mSystems. https://doi.org/10.1128/mSystems.00319-21 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Csárdi, G. N. T. The igraph software package for complex network research. Int. J. Comp. Syst. 1695, 1–9 (2006).

    Google Scholar 

  • Tipton, L. et al. Fungi stabilize connectivity in the lung and skin microbial ecosystems. Microbiome 6, 12. https://doi.org/10.1186/s40168-017-0393-0 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ruiz, V. E. et al. A single early-in-life macrolide course has lasting effects on murine microbial network topology and immunity. Nat. Commun. 8, 518. https://doi.org/10.1038/s41467-017-00531-6 (2017).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • [ad_2]

    Source link