Alteration of barrier properties, stratum corneum ceramides and microbiome composition in response to lotion application on cosmetic dry skin

0
263


  • Turnbaugh, P. J. et al. The human microbiome project. Nature 449, 804–810. https://doi.org/10.1038/nature06244 (2007).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Samaras, S. & Hoptroff, M. Book Chapter—The Microbiome of Healthy Skin in Skin Microbiome Handbook: From Basic Research to Product Development 1–32 (Wiley, 2020).

    Book 

    Google Scholar 

  • Rothman, S. & Lorincz, A. L. Defense mechanisms of the skin. Annu. Rev. Med. 14, 215–242. https://doi.org/10.1146/annurev.me.14.020163.001243 (1963).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Grice, E. A. & Segre, J. A. The skin microbiome. Nat. Rev. Microbiol. 9, 244–253. https://doi.org/10.1038/nrmicro2537 (2011).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • James, A. G. Book Chapter—The Axillary Microbiome and its Relationship with Underarm Odor in Skin Microbiome Handbook: From Basic Research to Product Development 9–129 (Wiley, 2020).

    Google Scholar 

  • Oh, J. et al. Temporal stability of the human skin microbiome. Cell 165, 854–866. https://doi.org/10.1016/j.cell.2016.04.008 (2016).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Kong, H. H. et al. Temporal shifts in the skin microbiome associated with disease flares and treatment in children with atopic dermatitis. Genome Res. 22, 850. https://doi.org/10.1101/gr.131029.111 (2012).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fitz-Gibbon, S. et al. Propionibacterium acnes strain populations in the human skin microbiome associated with acne. J. Investig. Dermatol. 133, 2152–2160 (2013).

    CAS 
    Article 

    Google Scholar 

  • Grimshaw, S. G. et al. The diversity and abundance of fungi and bacteria on the healthy and dandruff affected human scalp. PLoS ONE 14, e0225796. https://doi.org/10.1371/journal.pone.0225796 (2019).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Segre, J. A. et al. Skin microbiome in health and disease. Genome Biol. 11, I18. https://doi.org/10.1186/gb-2010-11-s1-i18 (2010).

    Article 
    PubMed Central 

    Google Scholar 

  • Augustin, M. et al. Prevalence, predictors and comorbidity of dry skin in the general population. J. Eur. Acad. Dermatol. Venereol. 33, 147–150. https://doi.org/10.1111/jdv.15157 (2019).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Mekic, S. et al. Prevalence and determinants for xerosis cutis in the middle-aged and elderly population: A cross-sectional study. J. Am. Acad. Dermatol. 81, 963–969. https://doi.org/10.1016/j.jaad.2018.12.038 (2019).

    Article 
    PubMed 

    Google Scholar 

  • De Benedetto, A., Kubo, A. & Beck, L. A. Skin barrier disruption: A requirement for allergen sensitization? J. Invest. Dermatol. 132, 949–963. https://doi.org/10.1038/jid.2011.435 (2012).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Hu, L. et al. Epidermal dysfunction leads to an age-associated increase in levels of serum inflammatory cytokines. J. Investig. Dermatol. 137, 1277–1285. https://doi.org/10.1016/j.jid.2017.01.007 (2017).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Knox, S. & O’Boyle, N. M. Skin lipids in health and disease: A review. Chem. Phys. Lipid 236, 105055. https://doi.org/10.1016/j.chemphyslip.2021.105055 (2021).

    CAS 
    Article 

    Google Scholar 

  • Weerheim, A. & Ponec, M. Determination of stratum corneum lipid profile by tape stripping in combination with high-performance thin-layer chromatography. Arch. Dermatol. Res. 293, 191–199. https://doi.org/10.1007/s004030100212 (2001).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • van Smeden, J. & Bouwstra, J. A. Stratum corneum lipids: Their role for the skin barrier function in healthy subjects and atopic dermatitis patients. Curr. Probl. Dermatol. 49, 8–26. https://doi.org/10.1159/000441540 (2016).

    Article 
    PubMed 

    Google Scholar 

  • Ishikawa, J. et al. Dry skin in the winter is related to the ceramide profile in the stratum corneum and can be improved by treatment with a Eucalyptus extract. J. Cosmet. Dermatol. 12, 3–11. https://doi.org/10.1111/jocd.12019 (2013).

    Article 
    PubMed 

    Google Scholar 

  • Ishikawa, J. et al. Changes in the ceramide profile of atopic dermatitis patients. J. Investig. Dermatol. 130, 2511–2514. https://doi.org/10.1038/jid.2010.161 (2010).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • van Smeden, J. et al. The importance of free fatty acid chain length for the skin barrier function in atopic eczema patients. Exp. Dermatol. 23, 45–52. https://doi.org/10.1111/exd.12293 (2014).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Janssens, M. et al. Increase in short-chain ceramides correlates with an altered lipid organization and decreased barrier function in atopic eczema patients. J. Lipid Res. 53, 2755–2766. https://doi.org/10.1194/jlr.P030338 (2012).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Masukawa, Y. et al. Characterization of overall ceramide species in human stratum corneum. J. Lipid Res. 49, 1466–1476. https://doi.org/10.1194/jlr.M800014-JLR200 (2008).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Mandal, S. et al. Analysis of composition of microbiomes: A novel method for studying microbial composition. Microb. Ecol. Health Dis. 26, 27663. https://doi.org/10.3402/mehd.v26.27663 (2015).

    Article 
    PubMed 

    Google Scholar 

  • Lozupone, C. & Knight, R. UniFrac: A new phylogenetic method for comparing microbial communities. Appl. Environ. Microbiol. 71, 8228. https://doi.org/10.1128/AEM.71.12.8228-8235.2005 (2005).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Douglas, G. M. et al. PICRUSt2 for prediction of metagenome functions. Nat. Biotechnol. 38, 685–688. https://doi.org/10.1038/s41587-020-0548-6 (2020).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Segata, N. et al. Metagenomic biomarker discovery and explanation. Genome Biol. 12, R60. https://doi.org/10.1186/gb-2011-12-6-r60 (2011).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Wang, L. et al. Facial skin microbiota mediated host response to pollution stress revealed by microbiome networks of individuals. mSystems. https://doi.org/10.1128/mSystems.00319-21 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Fluhr, J. W., Darlenski, R. & Surber, C. Glycerol and the skin: Holistic approach to its origin and functions. Br. J. Dermatol. 159, 23–34. https://doi.org/10.1111/j.1365-2133.2008.08643.x (2008).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Berkers, T., van Dijk, L., Absalah, S., van Smeden, J. & Bouwstra, J. A. Topically applied fatty acids are elongated before incorporation in the stratum corneum lipid matrix in compromised skin. Exp. Dermatol. 26, 36–43. https://doi.org/10.1111/exd.13116 (2017).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Stacy, A. & Belkaid, Y. Microbial guardians of skin health. Science 363, 227–228. https://doi.org/10.1126/science.aat4326 (2019).

    ADS 
    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Lai, Y. et al. Activation of TLR2 by a small molecule produced by Staphylococcus epidermidis increases antimicrobial defense against bacterial skin infections. J. Investig. Dermatol. 130, 2211. https://doi.org/10.1038/jid.2010.123 (2010).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Lai, Y. et al. Commensal bacteria regulate Toll-like receptor 3-dependent inflammation after skin injury. Nat. Med. 15, 1377–1382. https://doi.org/10.1038/nm.2062 (2009).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Li, D. et al. Lipopeptide 78 from Staphylococcus epidermidis activates β-catenin to inhibit skin inflammation. J. Immunol. https://doi.org/10.4049/jimmunol.1800813 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Nakatsuji, T. et al. A commensal strain of Staphylococcus epidermidis protects against skin neoplasia. Sci. Adv. 4, 4502. https://doi.org/10.1126/sciadv.aao4502 (2018).

    ADS 
    CAS 
    Article 

    Google Scholar 

  • Nodake, Y. et al. Pilot study on novel skin care method by augmentation with Staphylococcus epidermidis, an autologous skin microbe—A blinded randomized clinical trial. J. Dermatol. Sci. 79, 119–126. https://doi.org/10.1016/j.jdermsci.2015.05.001 (2015).

    Article 
    PubMed 

    Google Scholar 

  • Zheng, Y. et al. Commensal Staphylococcus epidermidis contributes to skin barrier homeostasis by generating protective ceramides. Cell Host Microbe. https://doi.org/10.1016/j.chom.2022.01.004 (2022).

    Article 
    PubMed 

    Google Scholar 

  • Jiang, D. et al. Microbiome multi-omics network analysis: Statistical considerations, limitations, and opportunities. Front. Genet. https://doi.org/10.3389/fgene.2019.00995 (2019).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Layeghifard, M., Hwang, D. M. & Guttman, D. S. Disentangling interactions in the microbiome: A network perspective. Trends Microbiol. 25, 217–228. https://doi.org/10.1016/j.tim.2016.11.008 (2017).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Martin, R., Henley, J. B., Sarrazin, P. & Seite, S. Skin microbiome in patients with psoriasis before and after balneotherapy at the thermal care center of La Roche-Posay. J. Drugs Dermatol. 14, 1400–1405 (2015).

    PubMed 

    Google Scholar 

  • Baldwin, H. E., Bhatia, N. D., Friedman, A., Eng, R. M. & Seite, S. The role of cutaneous microbiota harmony in maintaining a functional skin barrier. J. Drugs Dermatol. 16, 12–18 (2017).

    CAS 
    PubMed 

    Google Scholar 

  • Seité, S., Zelenkova, H. & Martin, R. Clinical efficacy of emollients in atopic dermatitis patients—Relationship with the skin microbiota modification. Clin. Cosmet. Investig. Dermatol. 10, 25–33. https://doi.org/10.2147/CCID.S121910 (2017).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Palaniraj, A. & Jayaraman, V. Production, recovery and applications of xanthan gum by Xanthomonas campestris. J. Food Eng. 106, 1–12. https://doi.org/10.1016/j.jfoodeng.2011.03.035 (2011).

    CAS 
    Article 

    Google Scholar 

  • Glatz, M. et al. Emollient use alters skin barrier and microbes in infants at risk for developing atopic dermatitis. PLoS ONE 13, e0192443. https://doi.org/10.1371/journal.pone.0192443 (2018).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Capone, K., Kirchner, F., Klein, S. L. & Tierney, N. K. Effects of colloidal oatmeal topical atopic dermatitis cream on skin microbiome and skin barrier properties. J. Drugs Dermatol. 19, 524–531 (2020).

    Article 

    Google Scholar 

  • Zheng, Y. et al. Shifts in the skin microbiome associated with diaper dermatitis and emollient treatment amongst infants and toddlers in China. Exp. Dermatol. 28, 1289–1297. https://doi.org/10.1111/exd.14028 (2019).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Wilhelm, K. P., Elsner, P., Berardesca, E. & Maibach, H. I. Bioengineering of the Skin: Skin Imaging and Analysis 2nd edn. (Taylor & Francis, 1996).

    Google Scholar 

  • Feng, L. et al. Characteristic differences in barrier and hygroscopic properties between normal and cosmetic dry skin. II. Depth profile of natural moisturizing factor and cohesivity. Int. J. Cosmet. Sci. 36, 231–238. https://doi.org/10.1111/ics.12118 (2014).

    CAS 
    Article 
    PubMed 

    Google Scholar 

  • Williamson, P. & Kligman, A. M. A new method for the quantitative investigation of cutaneous bacteria. J. Investig. Dermatol. 45, 498–503 (1965).

    CAS 
    Article 

    Google Scholar 

  • Kurtz, Z. D. et al. Sparse and compositionally robust inference of microbial ecological networks. PLoS Comput. Biol. 11, e1004226. https://doi.org/10.1371/journal.pcbi.1004226 (2015).

    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Meinshausen, N. & Buhlmann, P. High-dimensional graphs and variable selection with the Lasso. Ann. Stat. 34, 1436–1462. https://doi.org/10.1214/009053606000000281 (2006).

    MathSciNet 
    Article 
    MATH 

    Google Scholar 

  • Liu, H., Roeder, K. & Wasserman, L. Proc. 23rd International Conference on Neural Information Processing Systems—Volume 2, 1432–1440 (Curran Associates Inc., 2010).

  • Efron, B. & Tibshirani, R. J. An Introduction to the Bootstrap (Chapman & Hall, 1993).

    Book 

    Google Scholar 

  • Wang, L. et al. Facial skin microbiota-mediated host response to pollution stress revealed by microbiome networks of individual. mSystems. https://doi.org/10.1128/mSystems.00319-21 (2021).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Csárdi, G. N. T. The igraph software package for complex network research. Int. J. Comp. Syst. 1695, 1–9 (2006).

    Google Scholar 

  • Tipton, L. et al. Fungi stabilize connectivity in the lung and skin microbial ecosystems. Microbiome 6, 12. https://doi.org/10.1186/s40168-017-0393-0 (2018).

    Article 
    PubMed 
    PubMed Central 

    Google Scholar 

  • Ruiz, V. E. et al. A single early-in-life macrolide course has lasting effects on murine microbial network topology and immunity. Nat. Commun. 8, 518. https://doi.org/10.1038/s41467-017-00531-6 (2017).

    ADS 
    CAS 
    Article 
    PubMed 
    PubMed Central 

    Google Scholar 



  • Source link